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Generalization of the Poiseuille law for one- and two-phase flow in a random capillary network
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Study of single-phase fluid flow in a three-dimensional (3D) random capillary network on a regular cu-
bic lattice has established a simple generalization of the Poiseuille law for the total flow. Results are dis-
cussed in the light of effective-medium theory and percolation theory. Detailed examination of the
behavior of such networks near percolation threshold leads to an extended model which is appropriate
for phase conductivities in two-phase flow. The simple expression for conductivity when combined with
pore phase occupancy distributions from a rule-based percolation approach can be used to calculate rela-

tive permeabilities in 3D networks.

PACS number(s): 47.55.Mh, 47.55.Kf

I. INTRODUCTION

The problem of describing the flow of a fluid through a
porous medium is encountered in many diverse fields but
is of particular interest in the petroleum industry. Al-
though in this case the problem is usually that of multi-
phase flow, the basic case of a single liquid is not trivial.
A long-standing problem is how to relate the transport
coefficients to the microscopic geometry of the medium.
There have been many different approaches to this prob-
lem; a comprehensive review is found in Dullien [1].

A simple model of a permeable rock is that of a three-
dimensional (3D) simple-cubic lattice of capillary tubes
with random radii. This is an idealized model but is ap-
propriate for studying the flow properties of porous
media [2]. One may question the validity of using a regu-
lar cubic lattice as a realistic model for a random porous
medium. However, it has been shown [3,4] that for a lat-
tice with coordination number of 14, there is no
difference in percolation behavior between a regular and
a random lattice. Moreover, for simple conductivity dis-
tributions, they show that the flow properties are almost
identical. Recent results [5] demonstrate that this con-
clusion is valid down to a coordination number of six;
below this there are significant differences. The flow
through each tube is given by Poiseuille’s law [6]. The
application of this law to each tube in the network, along
with the equation of conservation of mass at each node,
leads to a set of simultaneous linear equations. Given the
pressure difference across the network, these equations
can be solved to yield the pressures at each node in the
network and hence the total flow. This is equivalent to
that of electrical current in a random resistor network, a
problem that has been extensively studied [7,8]. This
similarity means that we can draw on the many results
from other workers in this field. Capillary models have
been used extensively to study the flow properties of
porous media [9,10]. There are other models for relative
permeabilities, such as the immiscible-lattice-gas model
[11]. Kalaydjian [12] includes the dynamics of interac-
tions between the fluids in his analysis. Recent work
based on the dense random packing of equal spheres has
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been successful in predicting relative permeabilities [13].

For a single tube, given the pressure and viscosity, the
dimensions of the tube determine the flow. The more
general problem is to establish parameters that determine
the flow for a random network of such tubes. There is a
simple relationship between the flow, the pressure
difference across the network, fluid viscosity, network
length, and cross-sectional area. The first two follow
from the linear nature of the problem while the latter can
be inferred from the results of percolation theory [14].
This leaves us with the question as to how the details of
the tube network contribute to the total flow. We can re-
phrase this question by asking whether there is a charac-
teristic parameter associated with the network and, if so,
how it relates to the flow. Currently there are two ap-
proaches to this problem, based on percolation theory
and effective-medium theory (EMT). In the percolation
approach, a characteristic length (the percolation radius)
is associated with the average flow in the network [Am-
begaokar, Halperin, and Langer [15] (AHL)], and in
EMT, an effective bond element conductivity is calculat-
ed directly. AHL claim that the percolation radius is the
fundamental size parameter that determines the flow.
Despite a convincing argument, they did not provide a
rigorous proof to support this statement. This method
has been revisited by several workers [10,16—19], who
have shown that their model for the absolute permeabili-
ty of a rock, based on the AHL model, yields good quan-
titative agreement with experiment. We can also consid-
er the problem from the point of view of the tube conduc-
tivities, and EMT was developed to describe electrical
conduction in a random resistor network [8] but is equal-
ly applicable to fluid flow. Each tube in the network is
replaced by one with conductivity g,,, which is defined by
the tube conductivity distribution [14,20]. The flow is
proportional to g,,, the characteristic conductivity of the
network. EMT has been used successfully to predict the
permeability of sandstone [21].

In almost all of the above studies, the distribution of
conductivities was limited to those of a uniform or bimo-
dal 8 function. This is because the general interest was in
resistor networks composed of insulators and constant
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resistance conductors, which can be modeled by these
distributions. Moreover, the percolation behavior of
such systems was considered more important than the ac-
tual value of the flow.

In this work, we consider a wide range of tube radius
distributions and, from the results of numerical simula-
tion, propose a simple generalization of Poiseuille’s law to
describe the total flow Q as a function of the total pres-
sure drop across the network, AP. We also investigate,
using our model, the dependence of the total flow on the
percolation radius and effective-medium conductivity.
On comparison, it will be seen that all of the results are
compatible. Moreover, we provide a simple counterex-
ample to the AHL claim that the percolation radius com-
pletely determines the total flow. We also investigate the
conductivity of networks near the percolation threshold
and propose an equation that describes the flow right
down to this threshold. This is then extended to a simple
model for two-phase flow and a description of relative
permeabilities. Two-phase flow in a network may be
viewed as the flow of bicontinuous phases that are topo-
logically intertwined. The conductivity of each phase
thus depends on which portion of the network (in terms
of the tube radii) that it occupies.

II. MODEL

Consider a cubic lattice of capillary tubes of dimen-
sions N, XN, X N,, which are the number of tubes in the
X, y, and z directions, respectively. We assume periodic
boundary conditions in the y and z directions in order to
simulate a large system and eliminate surface effects. We
could impose the condition of no flow at the boundaries;
it has been demonstrated [20] that there is no significant
difference between these two types of boundary condi-
tions for N,,N,,N, Z 6. The pressure gradient is in the x
direction. For a single tube of radius r; and length /, the
flow Q, is given by Poiseuille’s law [6]:

_ wriAP
! 8yl
where 7 is the viscosity and AP the pressure difference

along the tube. At each node, we have the conservation
of mass

(1)

6
2 Ql:O ’ (2)

i=1

which is equivalent to Kirchhoff’s law for a resistor net-
work. This leads to a set of simultaneous linear equations
that can be solved to give the total flow Q. We have stud-
ied this problem for the following radius distributions:
triangular, uniform, cubic, log-uniform, exponential,
truncated normal (TN), Rayleigh, Berman, and bimodal
uniform (a complete description of each is given in the
Appendix). We note that these radial distributions are
related to their corresponding conductivity distributions
through the equation f (r)dr =h (g)dg, g=r*. Thus a cu-
bic radial distribution corresponds to a uniform conduc-
tivity distribution.

In each case, we have solved for the total flow in net-
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works typically of dimensions 20X 10X 10, equivalent to
6100 tubes. Unless explicitly stated, it is to be assumed
that all results presented are from runs on a 20X 10X 10
network. A network is defined by the radius and length
of each tube: the radius is sampled from one of the distri-
butions (i) to (ix) (see Appendix) and all tube lengths are
set equal to unity. The resulting set of linear equations
was solved using a sparse matrix solver from the NAG li-
brary based on the Lanczos algorithm. The program was
run on a Micro VAX, a typical run taking from two to
five minutes. For a given distribution, we carried out a
series of calculations and found that the error was at
most 10%. In order to eliminate numerical and statisti-
cal errors, the results presented are the average of a series
of runs, typically 20 to 50 runs, in each case. For such a
series of calculations, the individual networks will be
different, although they are all sampled from the same
distribution and will have the same mean. The most im-
portant thing to note is that, by using a different distribu-
tion of tubes each time, we guarantee that we are investi-
gating only the statistical parameters of the distribution
and not a particular configuration.

We now turn to the results of these simulations; for
convenience, we use the tube length a as the basic unit of
length. It is a well-known result of percolation theory
[22] that the conductivity of a random network is propor-
tional to the cross-sectional area divided by the width,
A/L, where A=N,N,a” and L=N,a. Since the total
flow Q must vary as 1/7 and AP, we can write down an
equation for the total flow through the network,

o=2P4, 3)

nL

As discussed above, we seek to relate k to some parame-
ter of the network. By dimensional arguments, it is easy
to show that k must have the dimensions of length
squared. In fact, k is the permeability of the network as
defined through Darcy’s law [23]. We begin by consider-
ing characteristic lengths associated with the gross prop-
erties of the network, such as the mode, median, and
mean of the tube radius distribution. In Sec. IV, we in-
vestigate characteristic lengths defined by the network
near percolation threshold. Having studied the variation
of flow with these quantities for the various distributions,
it became apparent that the mean tube radius was the
correct one. We illustrate the dependence of flow on
mean radius for a variety of tube radius distributions in
Fig. 1; clearly, k is proportional to {p)* For conve-
nience, we use k=k /a’ and r={p)a in plots so that the
units are dimensionless. Indeed, we can write the equa-
tion

k=%<p>4az, )
where (r ) =(p)a is the average radius, defined by
Rmax
(ry= [, ""rf(rdr . (5)

min

It is important to note that the line in Fig. 1 is that pre-
dicted by Eq. (4) and not a fit to the data. We have found
that this equation predicts the permeability to a high de-
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FIG. 1. Log-log plot of permeability as a function of the
average tube radius for a series of distributions. The straight
line is that predicted by Eq. (4), k=7{p)*/8.

gree of accuracy, except for the uniform distribution.
The large spread of radius values of this distribution
leads to some inaccuracy; we have performed runs on
larger networks, 20X20X 20, with significant improve-
ment in the results (see Fig. 2). The remarkable thing is
that widely differing distributions with the same mean ra-
dius have the same network permeability. The total flow
through the network is given by
7{r)*AP

Q 8L N,N, . (6)
We have also investigated the possibility of k being
dependent on {p*), another plausible generalization of
Poiseuille’s law. In Fig. 3, we illustrate the dependence
of k on {p*). We see that there is a simple linear rela-
tionship; however, there is no unique equation for all the
distributions, as Eq. (4). It is clear from this result that
the mean radius is the simplest parameter to characterize
the flow through a random capillary network. We have
also calculated k as the distribution is broadened by in-
creasing the standard deviation o, keeping (r) fixed.
The uniform distribution is the “worst” case since it al-
lows for the greatest variation in radius. Results are
shown in Fig. 4, and it can be seen that there is little vari-
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FIG. 2. Log-log plot of permeability as a function of mean
radius for a uniform radius distribution on a 20X20X20
network. The straight line is that predicted by Eq. (4),
k=m{p)*/8.
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FIG. 3. Log-log plot of permeability as a function of the
fourth moment of the mean tube radius for a series of radius dis-
tributions.

ation of k with o.

Poiseuille’s law states that the flow is inversely propor-
tional to the length of the tube. In order to investigate
this situation in a network, we kept the radii fixed and al-
lowed the tube lengths to vary according to distributions
(i) to (vii) (Appendix). It was found that the flow is pro-
portional to the reciprocal of the average tube length
(1), as shown in Fig. 5. We then considered the situa-
tion where both the tube radius and length were allowed
to vary, as shown in Fig. 6. This leads us to the following
more general equation for the permeability of the 3D net-
work:

=7T(B>4 2
k=500

where (A)=(l)/a is the average dimensionless tube
length. It is important to note that the tube radii and
lengths are sampled from different distributions. It
should also be noted that this variation in tube length is
somewhat unphysical since we take it to be uncorrelated.
In reality, to maintain a cubic lattice, there would be a
correlation between the lengths of the tubes at adjacent
nodes.

Therefore, we see that the flow through a random net-
work of capillary tubes can be expressed as a Poiseuille
law for a single tube where the radius is the average ra-
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FIG. 4. Variation of permeability with the standard devia-
tion of the radius in the case of uniform distribution, {p ) = 100.
The central line is the predicted value of «; the upper and lower
lines correspond to +10% error.
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FIG. 5. Plot of the permeability against (A ), where (1) is
the mean tube length. The curve is that predicted by Eq. (7)
with (p)=1.

dius of the distribution of tubes in the network. This
makes physical sense since fluid flowing through any
node is more likely to encounter a tube of average size.
We can also understand how tubes of average size dom-
inate the flow if we examine the fluid velocity as a func-
tion of tube radius. We found that the highest velocities
are to be found in tubes close to average size. Again we
can argue that fluid from a given tube will flow, on aver-
age, into one of average size, implying the retardation of
velocities from large tubes. This effect had already been
noted in the early literature [1], but has been analyzed in
detail only recently [24,25].

It is not clear how much the underlying cubic lattice
influences this result: for simple conductivity distribu-
tions, the topology has little effect [3,4,5] for coordination
numbers s =6 (s =6 for a simple-cubic lattice). It is
surprising that this law does not seem to have been ob-
served by other workers in this area. However, in con-
trast to standard percolation theory, where the interest is
in such quantities as the percolation threshold and cluster
size distribution, we are concerned with the actual dy-
namics of the percolation process. This process has been
investigated using effective-medium theory and percola-
tion theory. In Secs. III and IV, we discuss our results in
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FIG. 6. Plot of the permeability against {p)*/(1), where
(p) and (1) are the mean tube radius and length, respectively.
The straight line is that predicted by Eq. (7), k=m{p)*/8(1).

Note that the radius distribution is cubic and the length distri-
bution log-uniform.
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relation to those theories and show that they are compa-
tible.

III. EFFECTIVE-MEDIUM THEORY

In the studies of flow in random networks, the results
are usually discussed in terms of tube conductivities. The
radius and conductivity distributions of a network are re-
lated by f(r)dr =h(g)dg and g=r*. Thus, it is easy to
show that {g!/%) is the characteristic quantity corre-
sponding to {r) for a random network. However, for
many years it has been known that there is another
characteristic conductivity for a random network, the
effective-medium conductivity. This was originally de-
rived to model hopping conductivity in conductor-
insulator materials [26,27]; Kirkpatrick [8] presents an
excellent description of this method. Although it was de-
rived for electrical current in a random resistor network,
it is straightforward to apply it to fluid flow if we associ-
ate the pressure with potential difference, flow with elec-
trical current, and flow resistance with electrical resis-
tance [20]. Each of the tubes in the network is replaced
by one with conductivity g,,, defined through the implicit
equation [8,20]

Emax (& —8m)h(8)

8min dg:o ’ (8)
21

+
£7 13

8m

where s is the coordination number of the lattice, and the
total flow is given by

_ 8m APA
8nL

Using Darcy’s law, we see that k=(7g,,)/8. We have
found that, for all of the distributions considered, with
fixed tube length, the permeability is indeed proportional
to g,,; one such example is shown in Fig. 7. From this re-
sult and that of Sec. II, it would be expected that there is
a simple linear relationship between g,, and (7). Such a
linear relationship was found by solving numerically be-
tween Egs. (5) and (8), as shown in Fig. 8. This is a some-
what surprising result since there is no obvious analytic
relation between the mean radius and the effective-
medium conductivity.
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FIG. 7. Log-log plot of the permeability as a function of the

effective-medium theory conductivity for a cubic radius distri-
bution. Note thatg,, =y a’
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FIG. 8. Plot of the effective-medium theory conductivity as a
function of the fourth power of the mean tube radius for a log-
uniform radius distribution.

If a large proportion of the tube conductivities are zero
(as for the log-uniform), then a large fraction of the net-
work is nonflowing (tube radius distribution weighted
heavily near zero). It is not valid to use EMT in this case
since it assumes that the system is homogeneous [20,28].
We have checked to see if the same is true when our
model based on the average tube radius, Eq. (4), is used.
In Fig. 9, we plot k as a function of {p) for a log-uniform
distribution of the form h(g)=1/QgInA), 1/A4<g=< A,
and zero otherwise. It is clear from Fig. 9 that the simple
relation defined by Eq. (4) is not valid in this case. This
also implies that EMT and our model are not valid in the
vicinity of the percolation threshold.

Therefore there is close similarity between EMT and
the model developed here as defined by Eq. (4); both
characterize the network by an averaged quantity. We
have found a numerical relationship between g,, and {r)
for all the distributions considered; however, there is no
obvious analytic relationship. In Eq. (8), it is clear that
the effective-medium conductivity is a function of the
coordination number s. There is no such relation in our
model Eq. (4), and it is not clear how one could include
such a dependence.
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FIG. 9. Log-log plot of permeability as a function of mean
radius for a log-uniform radius distribution with radii weighted
heavily near zero. Note that the fitted curve is given by
0.03¢(r) 1%,

IV. PERCOLATION THEORY

Let us now consider this problem from the point of
view of percolation theory; this assumes that the charac-
teristic tube size associated with the system is closely
connected to the percolation threshold [15,16]. Given a
distribution of tube radii (conductivities), set all of them
equal to zero and then open each of the tubes at random
until flow commences. From percolation theory, we
know that for a simple-cubic lattice, the fraction of bonds
that needs to be replaced for flow to begin is p,=0.25.
This is a result for an infinite cubic lattice, and is in-
dependent of the particular radius distribution used [22];
it only depends on the geometrical structure of the net-
work. Although we deal mainly with networks contain-
ing at most 6100 bonds, we obtain p, =0.25 to a high de-
gree of accuracy, and runs with networks up to
30X20X20 have confirmed this result.

Opening the bonds systematically, beginning with
those of largest radius, it is clear that flow will commence
at a certain value of R. This is the percolation radius R,
and is defined implicitly by the equation

Rmax
pe= [, " rf(rdr . (10)
P

AHL argued that the percolation radius completely
characterizes the conductivity of a random resistor net-
work [15]; if true, their argument is equally valid for a
capillary tube network. They claim that just above p, the
system consists of large clusters of connected tubes. The
insertion of tubes of radius R, connects a fraction of
these clusters across the network and flow begins. At this
point the flow is indeed dominated by tubes of radius R »
because, no matter how large the conductivity of any
cluster, the fluid must pass through single “bottleneck”
tubes of radius R,. They go on to say that even when all
of the tubes in the network are open, the flow is still
determined by tubes of size R,. Given the basic geome-
trical difference between a cluster spanning the network
and a full connected system, we were not immediately
convinced by this assertion. We have investigated the
variation of permeability as a function of the percolation
radius. There is a simple linear relationship between k
and pz (R,=ppa) for all except the TN distribution; see
Fig. 10. For most of the distributions, we can write down
an equation of the form

k=[3’p;;a2 ; (11)

however, the constant [ varies greatly between distribu-
tions, in contrast to the universality of Eq. (4). We also
find that R, is proportional to {r ); for a cubic distribu-
tion with R,;,=0, it can be shown that R,
=1.25(1—p_)/*(r), and that for a uniform distribution,
R,=2(1—p){r)+(2p,—1). For the other cases, it was
necessary to solve numerically between Egs. (10) and (14).
However, in the case of the TN distribution, we found
that R, is proportional {p)%>*a.

Thus we see that, for any given radius distribution,
there is a relationship between the permeability and the
percolation radius; however, there is no simple universal
formula as in the case of the permeability and mean ra-
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FIG. 10. Log-log plot of the permeability as a function of the
percolation radius for cubic and TN radius distributions.

dius. It should be emphasized that the lack of a simple
relationship between k and R, is for the case of the capil-
lary network model. Another approach based on charac-
teristic lengths resulted in very good agreement with ex-
periment [16].

In order to investigate further the effect of R, on the
total flow, we solved the problem for a bimodal uniform
distribution, as shown in Fig. 11. By placing =25% of
the bonds in sector (B), we ensure that the percolation
radius R, lies in that sector. We can vary the position of
section ( 4), thus varying 7 ) while R , remains constant.
We find that the total flow does indeed change, demon-
strating that, in some cases, the percolation radius does
not completely determine the flow. This has been noted
by Berman et al. [29], where they claim that the median
conductivity determines the conductivity of two-
dimensional resistor networks and discuss other coun-
terexamples to the AHL argument. The characteristic
conductivity G of any distribution must satisfy the Jensen
inequality

1
P <G <{g). (12)
The lower bound is the case of all the resistors (tubes) in
series, and the upper bound of all in parallel. For a dis-

(A) (B)

f(r)

Tube Radius (mm)

FIG. 11. Bimodal uniform radius distribution, f(r). It is
clear that the mean radius may be varied while the percolation
radius remains fixed.
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FIG. 12. Permeability as a function of the mean radius for a
distribution of the form f(r)=r°. The central curve is the an-
alytic prediction of Eq. (4); the upper and lower curves corre-
spond to kt10% error.

tribution of type (viii), used by Berman et al., it can be
shown that the percolation conductance can lie outside
this range. However, the mean radius for such distribu-
tions is () =2R ., and from Fig. 12 it can be seen that
Eq. (4) is valid. This is another example of a distribution
where the AHL argument is not valid.

V. BEHAVIOR NEAR PERCOLATION THRESHOLD —
TWO-PHASE FLOW

The conductance of networks near p, has been studied
in great detail by many authors [8,30-33]. We are in-
terested in this region since it allows us to construct a
very simple model of two-phase flow. We know that in a
permeable rock saturated with two liquids, the nonwet-
ting fluid (oil) tends to occupy the larger pores and the
wetting fluid (water) is more confined to the smaller pores
[23]. We model two phases in the following manner: ini-
tially the network is completely saturated with water,
then oil is added to the larger pores until the percolation
threshold for oil is attained. Mathematically we solve the
flow equations for the oil and water bonds separately, al-
lowing no interaction. This is indeed a very simple mod-
el, but it does produce some very interesting results.

Let us begin by considering the case of approaching
the percolation threshold at random. This means that in-
itially all of the tubes are closed, and an increasing per-
centage of tubes are opened at random (i.e., the order of
opening having no tube radius preference) until the net-
work is complete. The same problem has been studied in
the context of resistor [8] and in capillary networks [31].

Before discussing the conductivity of such systems, it is
interesting to consider the clustering behavior as the
tubes are opened at random. A cluster is an isolated tube
or any collection of connected tubes; a quantity of partic-
ular interest is the total number of clusters in the net-
work. A modified Hoshen-Kopelman algorithm [34] was
used to follow the clustering process. In Fig. 13, we plot
the variation of the total number of clusters as a function
of p, the fraction of replaced tubes. The overall form of
this graph is the same for all of the distributions con-
sidered. We note that by the time the percolation thresh-
old is reached there is a substantial decrease in the total
number of clusters. This behavior can be explained in the
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FIG. 13. Total number of tube clusters as a function of the
fraction of open tubes for a uniform distribution of tube radii on
a 20X 20X 20 network.

following manner: initially, as tubes are opened, N, in-
creases until a point of saturation is reached. The single
bonds begin to aggregate to form extended clusters until
there is a cluster that crosses the entire network, called a
spanning cluster, at p.. In the case of an infinite system
there is a unique spanning cluster [22], but in a finite sys-
tem it is possible that there may be more than one. We
have never found more than one spanning cluster over
many hundreds of calculations in large networks. After
D., the system is dominated by the spanning cluster with
few isolated clusters although, in a finite system, it is pos-
sible for a spanning cluster to form slightly above or
below p,.

Let us denote by M (p) the fraction of bonds in the
spanning cluster. It is well known [35,36] from percola-
tion theory that M (p) scales as (p —p.)?, where y =0.45;
see Fig. 14. If n (s) denotes the number of clusters of size
s, then it scales [35,36] as s~ 7, where 7=2.2. The corre-
sponding conductance of the network scales as (p —p.)’,
and there seems to be some uncertainty relating to the
value of this exponent. From percolation theory, we ex-
pect it to be a universal quantity [35], at least in the vicin-
ity of the percolation threshold, say p. =<p <p,+0.2. We
list the various values ascribed to this exponent in Table
I. We have found a value of 1.610.1 for randomly filled
networks, in accordance with many previous results for a
variety of distributions; this is true both in the immediate
vicinity of p, and over the whole range p. <p = 1. Since

0.8 -
0.71 .
0.61 .®

0.5 .

M(p)

0.4 .*
0.3 . |

021 .

0.1
0.0 0.1 0.2 0.3 0.4 0.5

P-Pe

FIG. 14. Fraction of tubes in the spanning cluster as a func-
tion of p —p. for a uniform radius distribution with {r)=10.5
on a 20X20X20 network.
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TABLE 1. This contains the various values proposed for the
critical conductivity exponent ¢ in the equation k ~(p —p. )".

Method of derivation Critical exponent

1.6+0.1,* 1.87°
2.0,° 1.940.2¢
1.95+0. 3¢

Computer simulation
Experimental
Theoretical

aS. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973); J. P. Straley,
Ann. Isr. Phys. Soc. 5, 353 (1983); I. Webman, J. Jortner, and
M. H. Cohen, Phys. Rev. B 16, 2593 (1977).

bP. M. Adler and H. Brenner, Ann. Rev. Fluid. Mech. 20, 35
(1988).

°D. Adler, L. P. Flora, and S. D. Senturia, Solid State Commun.
12, 9 (1973).

9B. Abeles, H. L. Pinch, and J. I. Gittleman, Phys. Rev. Lett.
35, 247 (1975).

°R. Fisch and A. B. Harris, Phys. Rev. B 18, 416 (1978).

the tubes are opened at random, it is expected that the
mean tube radius of the spanning cluster will be equal to
that of the entire network and, indeed, we have confirmed
this numerically.

On this basis, we propose the following extension of
Eq. (7) to describe the permeability:

t

LA ) (13)

k=" 4.2
8(p>a -

c

where t =1.6+0.1. Here we are carrying the averaging
model right down to the percolation threshold. This rela-
tion is illustrated in Fig. 15 for a cubic radius distribution
where the calculations are restricted to a region up to
20% above p.. It may be considered incorrect to assert
that (r) dominates the flow near p,, since this is where
the AHL argument is certainly valid. However, in the
case of a random fill, we expect that the characteristic ra-
dius will be the mean radius. Other work in this field
[3-5] indicates that results would be very similar for a
random lattice structure.

For a finite system, there are bound to be large fluctua-
tions in conductivity as we approach p.. In such a sys-
tem, the smallest bond in the spanning cluster will deter-
mine conductivity. The effect will be marked for a uni-

0.012
0.010
0.008 Ly
A
x| @
v 0.006
R

» 0.004 -

0.002 o

0.000
0.05 0.25 0.45 0.65

P-Pc
FIG. 15. Permeability divided by the factor 7{p)*/8 as a
function of p —p.. This is for a cubic radius distribution with

(r)=16. Note that the fitted value of the exponent is t =1.52,
whereas the curve is that predicted with ¢t =1.6.
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Cubic t=1.83

Log-Uniform t=1.46
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Cubic
Log-Uniform
Uniform

>onm

0.0 0.1 0.2 0.3

FIG. 16. Permeability divided by the factor m{p)*/8 as a
function of p —p, in the case of top filling. The curve is that
predicted with Eq. (15), and the fitted value of ¢ for each distri-
bution is included.

form distribution, since it allows each bond to have a
wide range of radii with equal probability. We would ex-
pect less statistical variation for a more peaked distribu-
tion, such as the TN, cubic, etc. In contrast to conduc-
tance, the cluster behavior is independent of the distribu-
tion considered; we found the same results in all cases for
M(p), n(s), and N ;.

Let us now consider in detail the cases of opening the
tubes beginning with the largest, which we refer to as top
filling; this is the AHL method. At each stage, we can
solve the network equations for the open and closed
tubes, the open tubes being filled by the nonwetting phase
(oil) and the closed tubes by the wetting phase (water).
At each step the permeability of each phase can be calcu-
lated, which allows for the derivation of a set of relative
permeabilities [1]. This simple model allows no interac-
tion between the two phases and also allows isolated
tubes to be opened, which is not physically realistic.
However, this rule-based pore-occupancy model is the
simplest of a class of such models that are more physical-
ly realistic, and it is adequate to test the conductivity ex-
pressions for relative permeability that are proposed here.
We can also do the converse; assume all of the tubes are
filled by oil, and water enters the network beginning with
the smallest tubes. We call this bottom filling.

It was evident from initial calculations that the simple
scaling behavior in Eq. (13) does not apply in this case. If
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Log-Uniform t=1.49 a
Uniform t=1.51 .
A
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FIG. 17. Permeability divided by the factor 7{p)*/8 as a
function of p —p, in the case of bottom filling. The curve is that
predicted with Eq. (15), and the fitted value of ¢ for each distri-
bution is included.
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FIG. 18. Permeability as a function of saturation for a TN
distribution with m =12 and d =10. The saturation S (dimen-
sionless) is the fraction of volume that is occupied by the wet-
ting (nonwetting) fluid. «, is the permeability of the nonwetting
fluid and k,, that of the wetting fluid [calculated using Eq. (15)].

we take the case of top filling, then it is clear that the
average tube radius is decreasing with decreasing p. We
expected the permeability to be dominated by the mean
tube radius of the flowing cluster. However, we found
that there is no significant difference between the mean
radius of the opened tubes and those in the spanning and
flowing clusters. The mean radius of the opened tubes is
given by

Rmax
(Plopen= [ " rf (r1dr (14)

where R is the minimum radius of opened tubes. This
leads us to propose the following as the equation for the
permeability as the tubes are opened from the top down
(or bottom up):

t

PP

s 4 2
k—-?<p>opena 1_Pc

(15)

In Figs. 16 and 17, we plot the results of top and bot-
tom filling for a variety of radius distributions. As can be
seen, there are discrepancies between the values of the
conductivity exponent ¢, especially for the uniform distri-
butions. It is difficult to evaluate the influence of finite-
size effects on these results.

With the results of this simulation, we can plot relative
permeability curves on the basis of this simple model; see
Fig. 18. It is interesting that these curves have the same
general characteristics as real relative permeability curves
[37], despite the fact that there is no interaction between
the two phases.

VI. CONCLUSION

We have investigated the flow properties of random
capillary networks on a cubic lattice and we have found
the result that the flow or permeability can be expressed
quantitatively in a generalized form of Poiseuille’s law.
This expression is independent of the type of tube radius
distribution. It should be noted that while we can write
down similar equations for the flow in terms of the per-
colation radius, there will be largely differing constants
according to the form of the radius distribution. This re-
sult was shown to be compatible with those of effective-
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medium theory and percolation theory. Moreover, it has
been demonstrated that percolation theory does not al-
ways provide a complete description of network flow.
Apart from the elegance of this result, it is very practical
since calculations on large networks require much com-
puter time, while this formula allows us to calculate
directly the total flow for any given network.

It is possible to use this model to describe the flow
properties of these systems right down to percolation
threshold. Moreover, we have presented a simple model
for two-phase flow that results in analytic expressions for
the relative permeabilities.

As mentioned above, our studies were limited to simu-
lations on a cubic lattice. It is difficult to infer how our
results would look on a random lattice with coordination
numbers s =6. However, we have pointed out that other
workers in this area have shown that, for s = 6, there is
little difference in percolation behavior and flow proper-
ties (for simple conductivity distributions) between ran-
dom and regular lattices. It is indeed fortuitous that the
relation between the flow and the network parameters in
Eq. (4) takes this simple form on a cubic lattice when
s =6.

In conclusion, we have seen that, despite their compli-
cated nature, the overall macroscopic conductivity prop-
erties of three-dimensional random capillary networks on
a regular cubic lattice can be described by very simple
equations.
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APPENDIX

We present a list of the tube radius distributions used
in the calculations.

(i) Triangular,
a(r —Ri.), Rpn=<r=c,
f(r)=B(R . —7),
0 otherwise ,

where ¢ =(aR i, —BR max ) /(R min T R max )-
(ii) Uniform,

1

max

(R R

0 otherwise .

b
min )

(iii) Cubic,

473
—F—, R .. <r=R_..,
(R ?nax —R ‘r*nin ) e o
fn= 0 otherwise .
(iv) Log-uniform,
1 p <<
Nr ’ min — - max
f(r= 0 otherwise ,
where N=In(R,, /R ,in)-
(v) Exponential,
e*?’
—R_. —R ’ Rmin—rSRmax ’
e min —e max
fn= 0 otherwise .
(vi) Rayleigh,
1 —d%r—R_; P <. <
fr)=—=(r—R_)e sy Rpin<r<oo,

2d?

where d is a constant.
(vii) Truncated normal,
—(y— 2 d?,
N (R s —7)(r —R )~ mm?/2d%
M= 1R in<r=<R,_. »

0 otherwise ,

min )

where m and d are constants and N is a normalization
factor. This is just a normal distribution with cutoff
points at R ;) and R ,,; such distributions are similar to
real pore-size distributions in porous media.

(viii) Distribution used by Berman [20],

8R?

min

’
r9

fn= 0 otherwise .

R

<
min =7 < ® ,

(ix) Bimodal uniform,

flr)= B

where a+[3=1; see Fig. 11.
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